

### Medusa3D: The Watchful Eye Freezing Illegitimate Users in Virtual Reality Interactions

<u>Aochen Jiao</u>\*, Di Duan\*, and Weitao Xu

City University of Hong Kong





MobileHCI 2024 | Melbourne





#### PIN / Password in VR





#### Shoulder-surfing Attack







### **Static Biometric**

Vulnerable to **data leakage** and **replay attack** 



Once stolen -> unrecoverable









### **Active Biometric**



### Response = H (Challenge)

#### **Challenge-Response Method**

Biometric is human's response **pattern** to challenge, but not specific challenge or response.



# Reflexive eye movement is an activity that is driven by visual stimulation but does not require volitional control.

- R John Leigh and David S Zee. The neurology of eye movements. Contemporary Neurology

VR headsets that already include integrated eye tracker











Primax Crystal

PlayStation VR2

HP Reverb G2

Pico Neo 3 Pro Eye

HTC Vive Pro Eye

Can we use reflexive eye responses as biometric?

# **Preliminary Study**



- What eye responses are reflexive?
  - Reflexive saccade
  - Pupil diameter change
- How to elicit the reflexive responses?
  - When a noticeable change occurs in the field of view
  - When focused object changes its depth





#### Overview

- Visual stimulation
- Signal processing
- Feature extraction & Authentication



# System Design



- Visual Stimulation Design
  - Salient change: elicit reflexive saccades.
  - Variable depth: elicit pupil diameter changes.
  - **Unpredictability:** exclude the interference from memory.



(a) Stim. appears in FOV



(c) Saccades catch stim.



#### (b) Gaze intersects stim.



(d) New stim. is gazed.

## System Design



#### Signal Processing

- Reflexive saccades segmentation
  - Determine the time interval reflexive saccades may occur.
  - Employ iteration method to adaptively search the threshold.
  - Verify the reflexivity of saccades extracted.



# System Design



### Feature Extraction & Authentication

- Graph design
  - We embed the spatial information of reflexive saccades into a graph.
- GNN network design
  - We design a graph-oriented network that can classify the users' feature
- KNN classifier
  - With the feature extracted, a user-specific KNN model is selected that can package legitimate user samples.



### **Evaluation**



### Set-up

- Device:
  - HTC VIVE Pro Eye
- Threat model:
  - o Zero-effort attack
  - Replay attack
  - Mimicry attack
- Participants:
  - 25 (20 users + 5 attackers)
  - Various in demography and background
- Evaluation metrics:
  - FAR: False Acceptance Rate
  - FRR: False Reject Rate



### **Evaluation**



### Overall Performance

- Overall 0.21% FAR and 0.13% FRR
- Time required for authentication is about 5 s.

| Scheme             | FAR (%)     | FRR (%)     | Authentication<br>time(s) |
|--------------------|-------------|-------------|---------------------------|
| OcuLock [1]        | 3.55        | 3.55        | $\leq 10$                 |
| SkullConduct [2]   | 6.90        | 6.90        | ≤23                       |
| Brain Password [3] | 2.50        | 2.50        | $\approx 4.80$            |
| ElectricAuth [4]   | 0.83        | 2.00        | ≈1.30                     |
| SoundLock [5]      | 0.76        | 0.91        | $\leq 7$                  |
| VibHead [6]        | $\approx 5$ | $\approx 5$ | $\leq 1$                  |
| Medusa3D           | 0.21        | 0.13        | $\approx 5$               |

[1] Luo et al. 2020. OcuLock. NDSS 2020.

[2] Schneegass et al. 2016. SkullConduct. CHI 2016.

[3] Lin et al. 2018. Brain Password. MobiSys 2018.

[4] Chen et al. 2021. ElectricAuth. CHI 2021.

[5] Zhu et al. 2023. SoundLock. NDSS 2023.

[6] Li et al. 2024. Vibhead. TOSN 2024.



## **Evaluation**



#### Zero-effort attack

- Attackers attempt to unlock the device with their own biometrics as credentials
- FAR ~ 1%



### Replay attack

- Attackers replay a pre-recorded eye movement response.
- Challenge is always new. Pre-recorded one cannot match the new challenge.

### Mimicry attack

- Attackers acquire and imitate the eye movement patterns
- Visual stimuli are random and new every time.
- Imitation is voluntary and will be excluded from the reflexive part.

### Conclusion



- We propose Medusa3D, a challenge-response authentication system for VR based on reflexive eye responses.
- Medusa3D can utilize active biometric for authentication on users while keep safe against attackers.
- Future work will primarily focus on enhancing the system's robustness for long-term use.



# *Thanks for your attention! Q&A*

I am actively looking for Ph.D. position starting 2025. Feel free to contact me if you have any relevant information.

Email: aochen.jiao@cityu.edu.hk

Personal Website

